Received: September 9, 1982; accepted September 24, 1982

BESTIMMUNG DER ACIDITÄTSFUNKTION H_O IN KONZENTRIERTEN WÄSSRIGEN LÖSUNGEN DER 1,2,3,5-TETRAFLUORBENZOLDISULFONSAURE

P. SARTORI und W. HABEL

Universität - GH - Duisburg, Fachbereich 6 - Anorganische Chemie, Bismarckstr. 90, D 4100 Duisburg 1 (BRD)

SUMMARY

The acidity function H_0 of 1,2,3,5 tetrafluorobenzene disulfonic acid was determined in conc. aqueous solution using the Hammett bases 4-nitro-, 2-nitro-, 4-chloro-2-nitro, 2,5-dichloro-4-nitro- and 2,6-dichloro-4-nitro-aniline. The experimental determination was possible up to 73 weight percent of the acid. Values for concentration range 73 - 100 weight % could be extrapolated.

ZUSAMMENFASSUNG

Für die 1,2,3,5-Tetrafluorbenzoldisulfonsäure wurde die Aciditätsfunktion H_0 in konzentrierten wäßrigen Lösungen mit Hilfe der Hammett-Basen 4-Nitro-, 2-Nitro-, 4-Chlor-2-Nitro-, 2,5-Dichlor-4-Nitro- und 2,6-Dichlor-4-Nitro-Anilin bestimmt. Die H_0 -Werte der 1,2,3,5-Tetrafluorbenzoldisulfonsäure konnten bis zu einer Säurekonzentration von 73 Gew.% experimentell ermittelt werden. Darüber hinaus gelang für den Säurekonzentrationsbereich von 74 – 100 Gew.% die Bestimmung der Aciditätswerte durch Extrapolation.

EINLEITUNG

Im Anschluß an die Ermittlung der Aciditätsfunktion H_0 der 1,3,5-Trifluorbenzol-2,4-Disulfonsäure in konzentrierten wäßrigen Lösungen [1] konnte nun auch 1,2,3,5-Tetrafluorbenzol-

disulfonsäure [2] vermessen werden. Damit war es möglich, durch Vergleich mit der vollständig fluorierten Disulfonsäure den Einfluß des metaständigen H-Atoms der 1,3,5-Trifluorbenzol-2,4-Disulfonsäure auf deren Acidität zu untersuchen.

ERGEBNISSE UND DISKUSSION

Die Bestimmung der Aciditätsfunktion H_0 verlief in Analogie zu den schon beschriebenen Untersuchungen der Pentafluorbenzolsulfonsäure [3] und der 1,3,5-Trifluorbenzol-2,4-Disulfonsäure [1].

Die für die 1,2,3,5-Tetrafluorbenzoldisulfonsäure erhaltenen logI-Werte sind in der Tabelle 1 aufgeführt. Tabelle 2 gibt die aufgrund der Überlappungsmethode (Figur 1) gefundenen pK $_{\rm BH}$ +-Werte der jeweiligen Indikatoren im Vergleich zu denen der 1,3,5-Trifluorbenzol-2,4-Disulfonsäure sowie die $\lambda_{\rm max}$ -Werte wieder.

Der Gleichung H $_0$ = pK $_{\rm BH}$ +-logI entsprechend wurden die Aciditätswerte der 1,2,3,5-Tetrafluorbenzoldisulfonsäure berechnet und in der Tabelle 3 zusammen mit den H $_0$ -Werten der 1,3,5-Trifluorbenzol-2,4-Disulfonsäure aufgeführt.

Die graphische Darstellung der Aciditätswerte der 1,2,3,5-Tetrafluorbenzoldisulfonsäure gegen die Säurekonzentration in Gew.% führte zu dem in der Figur 2 dargestellten Kurvenverlauf. Da eine experimentelle Bestimmung der $\rm H_{o}$ -Werte aus Löslichkeitsgründen nur bis zu einer Säurekonzentration von 73 Gew.% möglich war, wurden die $\rm H_{o}$ -Werte des Konzentrationsbereichs von 74 - 100 Gew.% durch Extrapolation ermittelt. Hierbei wurde ein kontinuierlicher Kurvenverlauf der Aciditätsfunktion $\rm H_{o}$ vorausgesetzt.

Der auf diese Weise bestimmte $\rm H_{o}$ -Wert für 100%ige 1,2,3,5-Tetrafluorbenzoldisulfonsäure betrug $\rm H_{o}$ = -6,77 und lag damit um 0,51 logarithmische Einheiten unter dem $\rm H_{o}$ -Wert für 100%ige 1,3,5-Trifluorbenzol-2,4-Disulfonsäure, der zu $\rm H_{o}$ = -6,26 bestimmt worden war [1].

Die Erhöhung der Acidität bzw. die Vergrößerung der Proton-Donor-Fähigkeit den Hammett-Indikatoren im wäßrigen System gegenüber kann beim Übergang von 1,3,5-Trifluorbenzol-2,4-Disul-

logI-Werte als Funktion der 1,2,3,5-Tetrafluorbenzoldisulfonsäurekonzentration

TABELLE 1

Gew.%	logI	Gew.%	logI
	4 – N I	TROANILIN	
0,27	- 1,01	4,21	0,56
1,06	- 0,19	7,06	0,84
2,23	0,17	9,82	1,01
3,43	0,44		
	2-NI	TROANILIN	
3,43	- 0,98	17,18	0,03
4,68	- 0,58	20,03	0,12
8,23	- 0,31	23,98	0,25
11,14	- 0,18	26,44	0,33
15,36	- 0,03		
	4-CHL0	R-2-NITROANILIN	
21,01	- 0,55	35,32	- 0,03
23,99	- 0,45	39,18	0,14
27,66	- 0,31	42,37	0,35
31,24	- 0,19	46,11	0,63
	2,5-DICH	LOR-4-NITROANILIN	
40,67	- 0,63	54,65	0,14
13,33	- 0,52	59,08	0,45
16,14	- 0,40	63,65	0,86
51,22	- 0,10		
	2,6-DICH	LOR-4-NITROANILIN	
61,02	- 0,51	69,98	0,26
64,02	- 0,28	72,31	0,54
57,13	- 0,02		

TABELLE 2 UV-Absorptionen und p $K_{\rm BH}$ +-Werte der Indikatoren bei 25 $^{\rm O}{\rm C}$

Indikator	$^{\lambda}$ max	рК _{ВН} +		
	(nm)	c ₆ F ₃ H(SO ₃ H) ₂ [1]	C ₆ F ₄ (SO ₃ H) ₂	
4-Nitroanilin	380	0,99 a)	0,99 a)	
2-Nitroanilin	414	- 0,23	- 0,22	
4-Chlor-2-Nitroanilin 2,5-Dichlor-4-Nitro-	427	- 0,93	- 0,92	
anilin 2,6-Dichlor-4-Nitro-	371	- 1,87	- 1,86	
anilin	367	-	- 3,00	

a) Standardwert [4] [5]

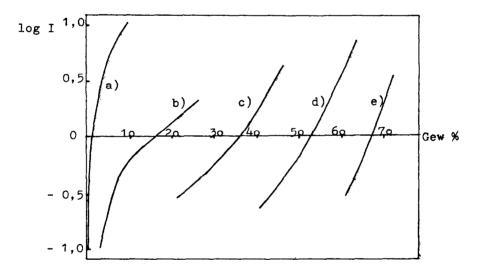


Fig. 1 Log I gegen Gew. $\% C_6F_5(SO_3H)_2$

- a) 4-Nitroanilin b) 2-Nitroanilin c) 4-Chlor-2-Nitroanilin
- d) 2,5-Dichlor-4-Nitroanilin e) 2,6-Dichlor-4-Nitroanilin

TABELLE 3

H_o-Werte

Gew.% Säure	C ₆ F ₃ H(SO ₃ H) ₂ [1]	c ₆ F ₄ (so ₃) ₂
	0.20	0.20
5,0	0,38	0,32
8,0	0,13	0,09
10,0	0	0
12,0	- 0,09	- 0,07
15,0	- 0,21	- 0,18
20,0	- 0,40	- 0,34
25,0	- 0,57	- 0,50
30,0	- 0,78	- 0,69
35,0	- 1,00	- 0,90
40,0	- 1,23	- 1,14
45,0	- 1,49	- 1,41
50,0	- 1,74	- 1,70
55,0	- 2,06	- 2,04
60,0	- 2,40	- 2,40
64,0	- 2,69	- 2,72
68,0	- 3,00	- 3,08*
72,0	- 3,34	- 3,50*
76,0	- 3,70*	- 3,93*
80,0	- 4,09*	- 4,40*
85,0	- 4 <u>,</u> 59*	- 4,95*
90,0	- 5,15*	- 5,55*
95,0	- 5,71*	- 6,15*
100	- 6,26*	- 6,77*
	~ ,	- , , ,

^{* =} extrapolierte Werte

fon- zur 1,2,3,5-Tetrafluorbenzoldisulfonsäure durch die größer Elektronegativität des 2-F-Atoms der 1,2,3,5-Tetrafluorbenzoldisulfonsäure im Vergleich zum metaständigen Wasserstoffatom der 1,3,5-Trifluorbenzol-2,4-Disulfonsäure erklärt werden. Dieses F-Atom bedingt durch seinen hier den +M-Effekt überwiegenden -I-Effekt einen stärkeren Elektronenabzug von den beiden ${\rm SO}_3{\rm H-Gruppen}$ und eine dadurch begünstigte ${\rm H}^+{\rm -Abspaltung}$ und Aciditätserhöhung der 1,2,3,5-Tetrafluorbenzoldisulfonsäure.

Für die bisher untersuchten fluorierten Benzolsulfonsäuren ergibt sich der Säurestärke entsprechend die folgende Reihenfolge:

$$c_{6}F_{5}so_{3}H$$
 << $c_{6}F_{3}H(so_{3}H)_{2}$ < $c_{6}F_{4}(so_{3}H)_{2}$
- 3,98 - 6,26 - 6,77

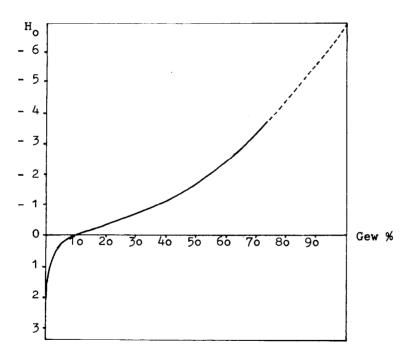


Fig. 2 $\rm\,H_{0}^{-}$ Werte aufgetragen gegen Säurekonzentration (Gew.%)

----- experimentell bestimmte H_o-Werte

Indikatoren

Die kommerziell erhältlichen Hammett-Indikatoren 4-Nitroanilin, 2-Nitroanilin, 4-Chlor-2-Nitroanilin, 2,5-Dichlor-4-Nitroanilin und 2,6-Dichlor-4-Nitroanilin wurden durch Umkristallisation in Ethanol und anschließender Sublimation gereinigt. Ihre Schmelzpunkte stimmten mit den in der Literatur beschriebenen überein.

1,2,3,5-Tetrafluorbenzoldisulfonsäure [2]

30 g 1,2,3,5-Tetrafluorbenzol wurden mit 50 g flüssigem SO $_3$ in einem Zweihalskolben mit Rückflußkühler unter Feuchtigkeitsausschluß für 12 h bei einer Temperatur von 120 °C gehalten. Nach Zugabe weiterer 16 g SO $_3$ wurde die Reaktionstemperatur für weitere 16 h auf 160 °C erhöht. Das auf Eis gegossene Reaktionsgemisch wurde mit BaCO $_3$ neutralisiert, BaSO $_4$ abfiltriert und die Bariumsalzlösung über einen Kationenaustauscher (Lewatit S 100) gegeben. Das Eluat wurde mit Aktivkohle behandelt, filtriert und am Rotationsverdampfer eingeengt. Weiteres Entwässern im Hochvakuum lieferte eine weiße Verbindung der Zusammensetzung $C_6F_4(SO_3H)_2$: 2,5 H $_2O$. Ausbeute 99 %, Schmp. 149 °C.

UV-spektroskopische Messung

Die UV-spektroskopische Bestimmung des Quotienten $I = \frac{[BH^+]}{[B]}$ wurde in Analogie zu [1] und [3] mit einem Gerät Perkin Elmer 576 durchgeführt.

Im Falle des 2,6-Dichlor-4-Nitroanilins reichte die Proton-Donor-Stärke der 1,2,3,5-Tetrafluorbenzoldisulfonsäure nicht mehr zur vollständigen Protonierung aus. Da jedoch, der Literatur gemäß [3], 2,6-Dichlor-4-Nitroanilin bei völliger Protonierung einen ϵ_{BH}^{+-} Wert von 0 aufweist, war es dennoch möglich, $I = \frac{IBH^{+}}{IBJ} zu bestimmen.$

DANKSAGUNG

Für die Unterstützung unserer Arbeit mit Sach- und Personalmitteln danken wir der Deutschen Forschungsgemeinschaft, dem Minister für Wissenschaft und Forschung des Landes Nordrhein-Westfalen sowie dem Verband der Chemischen Industrie, Fonds der Chemischen Industrie

LITERATUR

- 1 W. Habel, P. Sartori, J. Fluorine Chem., im Druck.
- 2 P. Sartori, G. Bauer, J. Fluorine Chem. $\underline{12}$, 203 (1978); ibid. 14, 201 (1979).
- 3 W. Habel, P. Sartori, J. Fluorine Chem. 19, 311 (1982).
- 4 M.J. Jorgenson, D.R. Hartter, J. Am. Chem. Soc. <u>85</u>, 878 (1963).
- 5 M.A. Paul, F.A. Long, Chem. Rev. 57, 1 (1957).